在短路過渡時,可以采用(Ar+CO2)混合氣體代替CO2以減少飛濺。如加入φ(Ar)=20%~30%的Ar。這是由于隨著含氬量的增加,電弧形態和熔滴過渡特點發生了改變。燃弧時電弧的弧根擴展,熔滴的軸向性增強。這一方面使得熔滴容易與熔池會合,短路小橋出現在焊絲和熔池之間。另一方面熔滴在軸向力的作用下,得到較均勻的短路過渡過程,短路峰值電流也不太高,有利于減少飛濺率。

產生原因及危害:產生焊瘤的主要原因,一是操作不熟練和運條方法不當;二是電弧拉得過長、焊速太慢、溶池溫度過高等。焊瘤在橫、立、仰焊中最為常見,在平焊的焊縫背面有時也可產生。焊瘤使焊縫的實際尺寸發生偏差,尺寸變化較大處易引起應力集中,且焊瘤下面往往存在夾渣。

當焊接熱輸入減小時,由于焊接接頭的冷卻速度增大,易形成淬硬組織而產生冷裂紋,因此,通常用抗裂性試驗確定熱輸入的下限;當熱輸入增大時,由于焊接接頭容易過熱而導致熱影響區粗晶脆化,因此,常采用焊接接頭的夏比V形缺口沖擊試驗,或段磊韌度試驗確定熱輸入的上限。當為防止產生冷裂紋測出的熱輸入下限高于為防止接頭脆化測出的熱輸入上限時,就需要考慮采取焊前預熱、焊后緩冷、后熱或焊后熱處理等工藝措施。在這種情況下,盡量采取較小的熱輸入以保證接頭韌性滿足要求,同時利用焊前預熱、焊后緩冷或后熱延長接頭從800℃冷卻到500℃或300℃的時間,或者利用焊后及時熱處理以消除淬硬組織,防止產生冷裂紋。預熱溫度、后熱溫度也是通過抗裂性試驗確定的。
三峽工程壓力鋼管選用16MnR和160Q2可焊性好的鋼種,其焊接方法首選氣保焊。在預制廠應推廣實心焊絲氣保焊,在實驗基礎上推廣藥芯焊絲氣保焊,推廣氣電立焊;在工地安裝立足于手工焊的基礎上推廣氣保護焊。這些方法必將帶來巨大的效益。